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The transmission T and conductance G through one or multiple one-dimensional, �-function barriers of
two-dimensional fermions with a linear energy spectrum are studied. T and G are periodic functions of the
strength P of the �-function barrier V�x ,y� /�vF= P��x�. The dispersion relation of a Kronig-Penney �KP�
model of a superlattice is also a periodic function of P and causes collimation of an incident electron beam for
P=2�n and n integer. For a KP superlattice with alternating sign of the height of the barriers the Dirac point
becomes a Dirac line for P= �n+1 /2��.
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I. INTRODUCTION

The study of particle motion in periodic potentials is at
the heart of condensed-matter physics and it is usually as-
sumed that the energy spectrum is parabolic. One of the
earliest examples is the well-known, one-dimensional �1D�
Kronig-Penney �KP� model1 that consists of an infinite suc-
cession of very thin �W→0� and very high �V0→�� barriers,
referred to as �-function barriers but such that their product
P�WV0 remains constant. This results in minibands in the
electron spectrum.

One may wonder though how such results are modified if
the energy is linear-in wave vector. Such a spectrum occurs
for relativistic electrons with energy E=�cp�E0=m0c2,
where c is the speed of light and m0 the bare electron rest
mass. Even without neglecting E0 a strict 1D Dirac KP
model was considered for relativistic quarks.2 It is also
known that electrons can transmit perfectly, upon normal in-
cidence, through arbitrarily wide and high barriers, referred
to as Klein paradox or Klein tunneling.3 With the discovery
of graphene,4 a one-atom-thick layer of carbon atoms, an-
other system became available in which particles �electrons�
moving in two dimensions, have a linear spectrum, E
=�vFk, with k� = �kx ,ky� the wave vector. Importantly, carriers
in graphene behave as chiral, massless fermions described by
Dirac’s equation without the mass term and move with the
Fermi velocity vF�c /300. There is a wealth of exceptional
properties of graphene; see, e.g., Ref. 5.

Because the carriers in graphene move in two dimensions,
tunneling through barriers is inherently two dimensional
�2D� and depends on the direction of the incident electron
beam even in the absence of a magnetic field. Many authors,
including ourselves, have studied this tunneling, through
single, multiple barriers, and superlattices.6,7 Surprisingly,
tunneling through �-function barriers has received very little
attention8 and we are not aware of any Dirac KP model for a
superlattice in graphene. An interesting development was the
application of periodic potentials to graphene that turned it
into a self-collimating material despite the rather unusually
high potentials used.9

Motivated by all these results and the absence of a sys-
tematic treatment of KP barriers or superlattices, we study in

this work the transmission through such structures as well as
the dispersion relation of a KP superlattice. Although the
model may appear a bit unrealistic since a relatively smooth
potential is needed to describe the carrier dynamics by the
Dirac equation,10 its simplicity is attractive and elucidates
certain symmetry properties of the spectrum. Furthermore
one can realize the model by using a potential which is
smooth on the scale of the atomic distance while the barrier
width should remain small compared to the typical electron
wavelength. The unexpected results mentioned in the ab-
stract are in sharp contrast with those for carriers with a
parabolic energy spectrum described by the Schrödinger
equation. We will use graphene as an example but the results
apply to any 2D system with a linear-in-wave-vector spec-
trum and a two-component spinor.

II. TRANSMISSION THROUGH A �-FUNCTION BARRIER

We describe the electronic structure of an infinitely large
flat graphene flake in single valley approximation by the
zero-mass Dirac equation and consider solutions with energy
and wave vector near the K point. The Hamiltonian is H
=vF�� · p� +1V with p� the momentum operator and 1 the 2
	2 unit matrix. In the presence of a 1D potential V�x� the
equation �H−E�
=0 admits solutions of the form 
�x�eikyy

where


�x� = � 1

sei� �ei�x, 
�x� = � 1

− se−i� �e−i�x �1�

with tan �=ky /�, s=sign�
−u�x��, �= ��
−u�x��2−ky
2	1/2, 


=E /vF�, and u�x�=V�x� /vF�; 
 and u�x� are in units of in-
verse length. As usual, we approximate a �-function barrier
with a very thin and very high barrier, of width W�→0� and
height V0�→�� but keep constant the dimensionless product
P=WV0 /�vF which we call its strength. Referring to Eq. �1�
and Fig. 1, the wave function in each of the regions �1�–�3�
can be written as a superposition of the eigenstates of Eq. �1�

n�x�=GnMn�x�An ,n=1,2 ,3, with coefficients A= �A ,B�T

and
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G = � 1 1

sei� − se−i� �, M�x� = �ei�x 0

0 e−i�x � . �2�

Matching the wave function at the interfaces x=0 and x=W
gives the transfer matrix N=G−1SG in terms of the matrix S
which relates the wave function in front of the barrier to the
one after it in the manner 
1�0�=S
3�0+�. The result is

S = G2M2
−1�W�G2

−1 = � cos P i sin P

i sin P cos P
� . �3�

We notice that S is a periodic function of P and that S
= �1 for P=n�. This is a special situation in which the two
pseudospin components of the wave function do not mix.
Later on we will see that this periodicity appears in the trans-
mission through a �-function barrier and in the dispersion
relation of the KP model.

With the elements of N denoted by nij, the transmission is
T= 
t
2=1 / 
n11
2. The explicit result is

T = 1/�1 + sin2 P tan2 �� , �4�

and coincides with the formula for transmission, found in
Ref. 6, in the limit of �-function barriers. Obviously, T and
R=1−T are periodic functions of P, that is, X�P+n� ,��
=X�P ,�� for n integer and X=T ,R. In addition, from Eq. �4�
we find that T�P ,�� has the following properties:

�1� T�P,�� = T�� − P,�� = T�� + P,�� ,

�2� T�n�,�� = 1,

�3� T��/2,�� = cos2 � ,

�4� T�P,� = 0� = 1, T � 1 for � � 0 ↔ ky � kx,

�5� T�P, � �/2� = 0, T � 0 for � � � �/2 ↔ ky � kx.

�5�

These results are very different from those of the nonrelativ-
istic case where T is a decreasing function of P. A contour
plot of the transmission is shown in Fig. 2�a�. This figure
shows clearly the symmetry properties T�P ,��=T�P ,−��
and T��− P ,��=T�P ,��.

Conductance

The two-terminal conductance is G
=G0�−�/2

�/2 T�P ,��cos �d�, with G0=2EFLye
2 / �vFh2� and Ly

the width of the system. Using Eq. �4� for T�P ,�� the result-
ing G is periodic in P and given by

G/G0 = 2�1 − arctanh�cos P�sin P tan P�/cos2 P . �6�

For one period, G is shown in Fig. 2�b�; its minimum value
is 4/3 and its maximum one 2.

III. TRANSMISSION THROUGH TWO �-FUNCTION
BARRIERS

We consider two barriers separated by a distance L char-
acterized by the potential V�x ,y� /�vF= P1��x�+ P2��x−L�,
with strengths P1,2 and introduce the dimensionless variables

→
L, ky→kyL, u0→u0L, and x→x /L. Due to space limi-
tations we treat only the cases of parallel and antiparallel
�-function barriers with the same strength 
P1
= 
P2
.

Parallel �-function barriers. This is a model system for a
resonant tunneling structure6,7 and also for a Fabry-Perot in-
terferometer whose resonances were recently investigated
experimentally.11 The transmission is given by

T = �1 + tan2 ��cos kx sin 2P − 2s sin kx sin2 P/cos ��2�−1

�7�

with s=sign�
�. The properties of T�P ,� ,kx� are identical to
those for a single barrier except for property �3� and property
�1� which must be replaced by T�P ,� ,kx�=T�P+n� ,� ,kx�.
In Fig. 3�a� we show T�P ,� ,kx� through two barriers with
P=� /10.

y

x

(b)(a)

FIG. 1. �Color online� �a� 1D potential barrier of height V0 and
width W. �b� Wave-vector k� = �kx ,ky� geometry for an electron, with
energy 0�E�V0, impinging on a square potential barrier �gray
area�.

(b)(a)

FIG. 2. �Color online� �a� Transmission T through a �-function
barrier vs its strength P and the angle of incidence ��tan �
=ky /kx�. Only one period is shown. �b� Conductance G /G0 vs P.

FIG. 3. �Color online� �a� Transmission through two parallel
�-function barriers, as a function of the wave-vector component kx

and angle of incidence �, for P=� /10. The yellow solid curve
shows the contour with a transmission value of 0.75 for P=� /2. �b�
As in �a� for two antiparallel �-function barriers.
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Antiparallel �-function barriers. We now consider two
parallel � functions but with opposite sign, P= P1=−P2. The
result for the transmission is

T = �cos2 kx + sin2 kx�1 − sin2 � cos 2P�2/cos4 ��−1. �8�

In Fig. 3�b� we show the transmission through two opposite
barriers for P=� /10. The symmetry properties of T�P ,� ,kx�
for a single barrier again hold, except for the value of
T�� /2,� ,kx�, see property �3�. In addition, we now have
T�P ,� ,kx�=T�P ,� ,−kx�.

The periodicity in the transmission is also present in the
conductance G. We show G in Fig. 4�a� for parallel and in
Fig. 4�b� for antiparallel �-function barriers.

IV. KRONIG-PENNEY MODEL

For an infinite number of periodic square barriers, one can
tune the system into a self-collimating material.9 For special
values of V0, W, and L it was found in Ref. 9 that the dis-
persion relation near the K point is almost linear in kx and
constant along ky. The system thus behaves as a 1D metal.
We look for similar results using �-function barriers. Within
the KP model we replace the square barriers by �-function
barriers, characterized by V�x ,y� /�vF=� j=−�

� P��x− jL�. The
resulting wave function is a Bloch function and the transfer
matrix N pertinent to these barriers leads to 
�1�=eikx
�0�
and A1=NA2, with kx the Bloch wave vector. From these
conditions we can extract the relation e−ikxM�1�A2=NA2,
with M�x� given by Eq. �2�. Then setting the determinant of
the coefficients in A2= �A ,B�T equal to zero and using the
transfer matrix for a �-function barrier leads to ��= �
2

−ky
2�1/2�,

cos kx = cos P cos � + �
/��sin � sin P . �9�

The solution of Eq. �9� gives the dispersion which is periodic
in P and the spectrum is shown in Fig. 5 for P=� /2. Further,
Eq. �9� is mapped, for ky =0, directly onto that for strictly 1D
fermions2 and gives the spectrum


 = P � kx + 2n� �10�

with n an integer.
Equation �9� contrasts very sharply with that for 2D elec-

trons with a parabolic spectrum in a 1D KP potential which,
with ��= �2�
−ky

2�1/2 and �=mvFL /�, reads

cos kx = cos �� + ��P/���sin ��, �11�

the resulting dispersion relation is not periodic in P.

Properties of the spectrum

Since the dispersion relation is periodic in P, with period
2�, it is sufficient to study it only for 0� P�2�. For par-
ticular values of P we find

�1� P = 2� → 
 = � �ky
2 + �kx + 2n��2�1/2,

�2� P = � → 
 = � �ky
2 + �kx + �2n + 1���2	1/2,

�3� P = �/2�3�/2� → cos kx = + �− �
 sin �/� . �12�

In limiting cases we are able to obtain explicit expressions
for E=E�kx ,ky�. We expand the dispersion relation for small
ky and 
− P. The resulting quadratic equation for 
 is solved
by


� � P � �4 sin2�kx/2� + �ky
2/P2�sin2 P�1/2. �13�

For small kx we can replace the term 4 sin2�kx /2� by kx
2.

Notice that for kx=0 we find 
�� P�ky sin P / P which is a
linear spectrum with a reduced velocity. For ky =0, we have

�= P�2 sin�
kx
 /2�, which is linear for small kx but pos-
sesses a typical band shape for large kx��. For small kx
�ky sin P / P we have


� � P � �2kx
2 + ky

2 sin2 P/P2�/2
kx
 . �14�

For P�1, 
 is highly anisotropic and nearly flat vs ky.
Relation to the spectrum of a square superlattice. We now

look whether we can find an energy spectrum similar to that
of Ref. 9 pertinent to square barriers, with height V0
=720 meV, width W=5 nm, and unit-cell length L
=10 nm. In our units these values correspond to P

(b)(a)

FIG. 4. �Color online� �a� Conductance G�G0� vs 
 for several
strengths P through two parallel �-function barriers. �b� As in �a�
for two antiparallel barriers.

FIG. 5. �Color online� �a� Energy bands, near the Fermi level,
close to the K point in the KP model, for P=� /2. The valence band
touches the conduction band at 
= P=� /2. For large ky the valence
band becomes flat. �b� and �c� projections, respectively, of the va-
lence and conduction bands onto the �kx ,ky� plane.
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=V0W /vF�=2� and lead to 
= � �ky
2+ �kx+2n��2�1/2. Since

the Fermi level in these units is 
F=2�= P, we look for the
spectrum near the value 
= �ky

2+ ��
kx
+2��2�1/2. Although
these bands seem to fulfill our demands because the disper-
sion looks rather flat in the ky direction, the concern is that
we would obtain the same dispersion for P→0 and 
F
→2�. But this can be obtained by folding the conelike dis-
persion of graphene and results simply from working in the
reduced-zone scheme. Consequently no new fundamental
physics should be attached to it. Further, from this correspon-
dence we expect and found that for square barriers with P
=2�n, the situation is more favorable for the occurrence of
collimation. It follows that the collimation effect is also ob-
tainable for barriers that are lower than the unusually high
ones of Ref. 9 if one uses longer unit-cell periods.

V. EXTENDED KRONIG-PENNEY MODEL

The square barriers are replaced by alternating-in-sign
�-function barriers. The unit cell of the periodic potential
contains one such barrier up, at x=0, followed by a barrier
down, at x=1 /2. The resulting transfer matrix leads to

cos kx = cos � − �2ky
2/�2�sin2��/2�sin2 P , �15�

where tan �=ky /�. From Eq. �15� we deduce that the disper-
sion is periodic in P, with period �, and has the following
properties:

�1� it is invariant for 
 → − 
 and P → � − P ,

�2� P = n� → 
 = � �ky
2 + �kx + 2n��2�1/2,

�3� P = �/2 → �
,kx,ky� = �0,0,ky� . �16�

In Fig. 6�a� we show the spectrum for P=� /2. As seen, it is

almost independent of ky for small energies while in the kx
direction the bands are linear; this is an advantageous situa-
tion for self-collimation. For ky =0 we obtain the linear spec-
trum


 = � 
kx
 + 2n� , �17�

with the Dirac point at 
=0. We can also find an explicit
expression for kx�0. Solving Eq. �15� gives


� = � 
ky cos P
 . �18�

Then the group velocity vy ��
 /�ky becomes small if P
�� /2+n�. Figure 6�b� shows the energy spectrum for P
=� /4, the Dirac cone becomes anisotropic, as the spectrum
flattens in the ky direction.

We now consider the case where kx and ky are nonzero. If

�1 then the right-hand side of Eq. �15� can be expanded in

. This leads to a quadratic equation for 
 with solutions


 � � 
ky

 cosh ky − cos kx − f

�ky/2�cos2 P sinh ky + f
�1/2

——→
P=�/2

� 
ky
sin�
kx
/2�/sinh�
ky
/2� , �19�

where f =2 sin2 P sinh2�ky /2�. For ky =0 we find the result
given by Eq. �13�, that is, 
�= �2 sin�
kx
 /2� which is linear
for small kx.

VI. CONCLUSIONS

In summary, we studied the transmission and conductance
of fermions, with energy linear-in wave vector, through one
and two �-function barriers and the energy spectrum of a KP
superlattice. For very high �V0→�� and very thin �W→0�
barriers we showed that they are periodic functions of their
strength P=WV0 /�vF, where vF is the Fermi velocity. Fur-
ther, we showed that a KP superlattice has an energy spec-
trum that is a periodic function of P, which is in sharp con-
trast with that obtained from the Schrödinger equation. An
important consequence of that is collimation of an incident
electron beam9 that here occurs for P=2�n with n an integer.
We also obtained various explicit but approximate dispersion
relations, e.g., for small wave vector k� = �kx ,ky�. Given the
intense research activity in graphene and the very recent ex-
perimental verification of Klein tunneling,12 we expect that
this periodic dependence on the strength P will be tested in a
near future.
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